Free filtrations of affine Weyl arrangements and the ideal-Shi arrangements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The freeness of ideal subarrangements of Weyl arrangements

A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any ideal subarrangement is a free arrangement and that its exponents are given by the dual partition of the height distribution, which was conjectured by ...

متن کامل

Affine and toric arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un ...

متن کامل

Primitive derivations, Shi arrangements and Bernoulli polynomials

LetW be a finite irreducible real reflection group, which is a Coxeter group. A primitive derivation D, introduced and studied by K. Saito (e.g., [4]), plays a crucial role in the theory of differential forms with logarithmic poles along the Coxeter arrangement. For example, we may describe the contact order filtration of the logarithmic derivation module using the primitive derivations ([10, 1...

متن کامل

The integer cohomology of toric Weyl arrangements

A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we prove that if T W̃ is the toric arrangement defined by the cocharacters lattice of a Weyl group W̃ , then the integer cohomology of its complement is torsion free.

متن کامل

Affine and Toric Hyperplane Arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2015

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-015-0624-z